Exact Traveling Wave Solutions of (3+1)-dimensional Kadomtsev-Petviashvili Equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation

In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Lump solutions to the Kadomtsev–Petviashvili equation

Article history: Received 31 March 2015 Received in revised form 18 June 2015 Accepted 30 June 2015 Available online 2 July 2015 Communicated by R. Wu

متن کامل

A new note on exact complex travelling wave solutions for (2+1)-dimensional B-type Kadomtsev-Petviashvili equation

Exact solutions of the (2+1) – dimensional Kadomtsev – Petviashvili by Zhang [Zhang H., Applied Mathematics and Computation 216 (2010) 2771 – 2777] are considered. To look for ”new types of exact solutions travelling wave solutions” of equation Zhang has used the G’/G – expansion method. We demonstrate that there is the general solution for the reduction by Zhang from the (2+1) – dimensional Ka...

متن کامل

Kadomtsev-Petviashvili equation

Here u = u(x, y, t) is a scalar function, x and y are respectively the longitudinal and transverse spatial coordinates, subscripts x, y, t denote partial derivatives, and σ2 = ±1. The case σ = 1 is known as the KPII equation, and models, for instance, water waves with small surface tension. The case σ = i is known as the KPI equation, and may be used to model waves in thin films with high surfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: DEStech Transactions on Engineering and Technology Research

سال: 2020

ISSN: 2475-885X

DOI: 10.12783/dtetr/amee2019/33451